为了提高目标物体的跟踪鲁棒性和稳定性,文中将L2正则化最小二乘法和卷积神经网络(CNN)相互结合,提出了一种基于正则化卷积神经网络的目标跟踪算法。通过L2跟踪器来评估目标无题被遮挡的程度,利用两层CNN对目标进行目标表示,去除了大部分无关样本,降低了算法的复杂度。实验结果表明,当目标物体发生姿态变化或旋转等剧烈的外观变化时,所提算法具有较强的鲁棒性和稳定性,并且比其他经典的跟踪算法具有更高的精度。