摘要
为更高效利用变电站巡检机器人开展电力巡检工作,满足电力行业发展对智能化巡检的需求,研究了面向电力巡检机器人的电力设备状态检测算法。首先,根据深度网络部署硬件芯片应用情况与性能对比,选择海思Hi3559A芯片作为算法移植的嵌入式平台。然后综合考虑各种检测算法的精度与速度,选用YOLOv3算法作为设备状态检测的基本判别模型。为了提升检测算法速度并减少模型体积,开展模型压缩算法及轻量型YOLOv3模型设计研究,分别提出了改进的小型化YOLOv3模型和基于通道剪枝与层剪枝结合的模型压缩方法,提高模型上下层的语义信息及剪枝后模型的精度保持。根据测试结果选择最优的模型在机器人前端部署,提出的轻量化YOLOv3模型很好地保持了设备目标与异物检测的精度,检测速度提升了4倍。