基于深度学习的跨模态医学图像转换

作者:董国亚; 宋立明; 李雅芬; 李文; 谢耀钦
来源:中国医学物理学杂志, 2020, 37(10): 1335-1339.
DOI:10.3969/j.issn.1005-202X.2020.10.021

摘要

运用深度学习的方法基于脑部CT扫描图像合成相应的MRI。将28例患者进行颅脑CT和MRI扫描得到的CT和MRI的断层图像进行刚性配准,随机选取20例患者的图像输入U-Net卷积神经网络进行训练,利用训练好的网络对未参与训练的8例患者的CT图像进行预测,得到合成的MRI。研究结果显示:通过对合成的MRI进行定量分析,利用基于L2损失函数构建的U-Net网络合成MRI效果良好,平均绝对平均误差(MAE)为47.81,平均结构相似性指数(SSIM)为0.91。本研究表明可以利用深度学习方法对CT图像进行转换,获得合成MRI,现阶段可以达到扩充MRI医学图像数据库的目的,随着合成图像精度的提高,可以用于帮助诊断等临床应用。

全文