摘要
冠层树种多样性是自然森林生态系统功能和服务的重要基础。及时掌握冠层多样性的现状及变化趋势,是探讨诸多重要生态学问题的前提,更是制定合理生物多样性保护策略的基础。但受制于传统的多样性信息采集方法,区域尺度的高精度冠层多样性监测发展较为缓慢;许多在气候变化和人类干扰下的生物多样性分布信息得不到及时更新。近年来基于无人机的冠层高光谱影像收集与分析技术的发展,使得冠层多样性监测迎来了新的发展契机。本文从森林冠层高光谱影像出发,介绍了与多样性监测相关的无人机航拍和基于深度学习的图像处理技术,并结合已有文献,探讨了无人机高光谱应用于森林冠层树种多样性监测的研究现状、可行性、优势及缺陷等。我们认为冠层高光谱影像为多样性监测提供了不可或缺且丰富的原始信息;而无人机与高光谱相机的结合,使得区域化高频率(如每周)、高精度(如分米乃至厘米级)的冠层多样性信息自动化收集成为可能。然而高光谱影像数据量大、数据维度高与数据结构非线性的特点为影像处理带来了挑战,而深度学习技术的飞跃,使得从冠层高光谱影像中提取个体及物种信息达到了极高精度。恰当地使用这些技术将大大提升冠层树种多样性的自动化监测水平,由此也将帮助我们在当前剧变环境下及时掌握森林冠层多样性的现状与变化,为生物多样性研究与保护提供可靠的数据支撑。
- 单位