摘要

针对模拟电路输出信号存在的非线性、高维数等特点所带来的诊断困难问题,提出一种支持向量机(SVM)分类器参数优化算法,进行模拟电路故障诊断.首先,运用S变换与灰度共生矩阵(GLCM)组合方法S-GLCM,对电路输出信号进行故障特征提取.其次,采用粒子群算法(PSO)与粒子滤波算法(PF)融合,通过重采样实时更新粒子的位置和速度,对SVM参数进行高效寻优,并将特征向量代入模型中进行训练和测试,完成对电路各故障模式的高精度故障诊断.最后,通过两个国际基准电路试验对该方法进行可靠性分析.试验结果表明:S-GLCM在处理非线性、非平稳信号时表现出很大优势,将电路输出信号每组1 500个采样点降为8维特征向量,减少冗余信息;该SVM分类器参数优化算法的诊断准确率较未优化算法提升约11.2%.