摘要
产草量是衡量草原生产力和诊断草原健康状况的指标,是草地资源管理的重要依据。近年来,遥感数据结合地面实测数据建模已成为产草量估算的重要手段。充足的实测样点信息是产草量遥感建模估算的基础。受境外采样多重因素的制约,蒙古国产草量估算研究中无法获取足够且分布均匀的实测样点,估产模型的精度受到影响,这一问题目前尚未发现有好的解决方法。本研究选取中蒙铁路沿线(蒙古段)两侧200 km缓冲区作为研究区,针对产草量遥感估算中野外样点稀少且分布不均的问题,引入P-BSHADE方法,基于多年NDVI数据和获取的少量地面实测样点数据,考虑草地分布的非均匀性以及样点之间的相关性,对均匀分布的模拟样点处的产草量数据进行插值实验。结果显示,P-BSHADE法的插值效果优于Kriging法,可得到均匀分布于研究区的样点。基于以上实测样点和插值样点,结合NDVI、EVI、PsnNet 3种植被指数进行遥感建模,最优模型精度达到80%,精度优于已有相关研究。选取其中最优的基于NDVI的指数模型对研究区2000—2019年产草量进行反演,获得的产草量空间格局与年际变化与已有研究结果趋势吻合,进一步印证了结果的可靠性和插值方法的可行性。本研究通过插值的方式改善数据源从而提高估算模型精度是一种全新的思路与尝试,对于"一带一路"等境外区域资源环境监测具有借鉴意义。
- 单位