摘要

长链非编码RNA(lncRNA)中的小开放阅读框(sORFs)能够编码长度不超过100个氨基酸的短肽。针对短肽预测研究中lncRNA中的sORFs特征不鲜明且高可信度数据尚不充分的问题,提出一种基于表示学习的深度森林(DF)模型。首先,使用常规lncRNA特征提取方法对sORFs进行编码;其次,通过自编码器(AE)进行表示学习来获得输入数据的高效表示;最后,训练DF模型实现对lncRNA编码短肽的预测。实验结果表明,该模型在拟南芥数据集上能够达到92.08%的准确率,高于传统机器学习模型、深度学习模型以及组合模型,且具有较好的稳定性;此外,在大豆与玉米数据集上进行的模型测试中,该模型的准确率分别能达到78.16%和74.92%,验证了所提模型良好的泛化能力。