摘要
由于边缘设备有限算力和边缘网络有限的无线资源,利用联邦边缘学习(federated edgelearning,FEEL)训练机器学习模型通常非常耗时。本文研究了量化FEEL系统中训练时间最小化问题,其中异构边缘设备通过正交信道向边缘服务器发送量化后的梯度。采用随机量化对上传的梯度进行压缩,可减少每轮通信的开销,但可能会增加通信轮数。综合考虑通信时间、计算时间和通信轮数对训练时间进行建模。基于所提出的训练时间模型,描述了通信轮数和每轮延迟之间的内在权衡。具体地,分析了量化FEEL的收敛性。提出一种基于数据模型双驱动的拟合方法以得到精确的最优间隔,并在此基础上得到通信轮数和总训练时间的闭式表达式。在总带宽限制下,将训练时间最小化问题建模为量化级数和带宽分配的优化问题。本文通过交替求解量化优化子问题(通过连续凸近似方法求解)和带宽分配子问题(通过二分查找方法求解)解决这个问题。在不同学习任务和模型下,仿真结果证明了本文分析的有效性和所提优化算法性能接近最优。
- 单位