摘要
针对BP神经网络在训练过程中收敛速度慢以及用于模式识别泛化能力差的问题,将粒子群优化算法PSO引入到BP神经网络的训练过程,建立了PSO-BP神经网络模型,并将其应用到连铸漏钢预报系统中。结合某钢厂连铸现场历史数据对该连铸漏钢预报系统进行了测试,测试结果以98.03%的预报率及100%的报出率,验证了基于粒子群优化算法的BP神经网络连铸漏钢预报系统模型的可行性和有效性。
-
单位亚稳材料制备技术与科学国家重点实验室; 邯郸钢铁集团有限责任公司; 燕山大学