摘要

为了提高CNG发动机排气温度预测精度,基于BP、RBF和GRNN神经网络建立了3种排气温度的预测模型。开展了CNG发动机台架实验,测量了不同工况条件下发动机的排气温度,利用实验值对模型进行训练,并预测了不同发动机转速、空气进气量、点火提前角等条件下的排气温度,将预测值与实验值进行了对比分析,评估了不同预测模型的准确性。结果表明:BP、RBF和GRNN 3种神经网络的误差分别为3.5%、2.8%和3.1%。RBF神经网络的预测误差比BP和GRNN神经网络的误差小,稳定性强,更适合CNG发动机的排气温度预测。