摘要

恶意行为检测是通过观察分析智能体一系列行为过程中的动作和行为识别其行为目的的方法。为了排除智能体行为的复杂性、误导性带来的影响,以隐马尔可夫为基础构造规划识别方法,综合分析多个智能体行为之间的关联关系推测行为目的性。文章提出恶意行为检测模型的整体框架,简述了复杂数据下的特征抽象方法,进而提出基于隐马尔可夫实现的规划识别方法,利用可观察节点与隐藏节点之间的关联关系分析预测。以UNIX系统日志为对象设计实验实例,验证方法的有效性,实验结果表明在合理提取攻击特征的情况下,方法对于恶意行为操作有较好的学习与检测性能。