摘要

为了加快新型含能材料研发的进度,减少因大量实验而带来的时间和资源的消耗问题,基于材料基因工程理论提出一种含能材料生成焓的预测方法。首先将搜集到的代表含能材料分子结构的原子坐标数据转换成表示分子内笛卡尔坐标系的库仑矩阵,以消除含能材料分子结构因平移、旋转、交换索引顺序等操作对生成焓预测造成的影响;然后,根据提出的基于Attention机制的卷积神经网络(Convolutional Neural Network,CNN)和双向长短期记忆网络(Bi-directional Short-term Memory Network,Bi-LSTM)的融合模型对含能材料的生成焓进行预测。这样,既可以有效提取数...