摘要
精准感知水位信息变化是实现精细水务管控和洪涝灾害的关键环节之一,而低照度、雾霾、雨雪、冰冻、波浪、镜头抖动等恶劣场景给水位检测带来极大挑战。针对现有方法中难以实现水位精准检测难题,构建一种融合Transformer与残差通道注意力机制的Unet模型(TRCAM-Unet),进而提出基于TRCAM-Unet的恶劣场景水位智能检测方法。关键技术包括通过全尺度连接结构实现多层次特征融合,通过Transformer模块强化区域特征的关联性,通过残差通道注意力模块强化有用信息的表达并削弱无用信息的干扰。相关试验和实践表明,TRCAM-Unet取得了98.84%MIOU评分与99.42%的MPA评分,在约150 m距离外水位检测最大误差不超过0.08 m,水位偏差均值(MLD)仅有1.609×10-2 m,优于Deeplab、PSPNet等主流语义分割算法。研究结果对解决恶劣场景下水位精准检测难题及洪涝灾害预警具有重要应用价值。
- 单位