摘要

区域光伏功率预测有助于调度人员科学、合理地制定调度方案,但现有研究方法没有充分考虑功率输出的时间相关性和云移动造成的影响。为此,提出了一种基于天气条件识别的区域光伏功率时空图神经网络预测方法。考虑了光伏电站之间随天气条件的变化而变化的影响因素,并根据云层覆盖情况将历史光伏发电数据分为三类,根据不同类别设置不同的邻接矩阵。在时空图卷积网络(spatio-temporal graph convolutional network, STGCN)模型的基础上建立了三个子模型,分别通过图卷积神经网络捕捉空间相关性和门卷积神经网络捕捉时间相关性。最后,应用实际数据进行了仿真,并与图神经网络模型、长短期记忆网络模型和STGCN模型进行比较。结果表明,采用STGCN分类模型的方法在功率预测精度上有显著提高。

  • 单位
    国网冀北电力有限公司; 保定电力职业技术学院