摘要
点云配准是大型车身构件位姿参数测量的关键方法,但现有算法在大量异常点云干扰下难以配准至有效位姿,从而导致匹配失真,进而无法保证后续机器人作业质量。针对此问题,提出一种能够有效抑制异常点云干扰的车身构件鲁棒性配准算法—鲁棒函数加权方差最小化(Robustfunctionweightedvarianceminimization,RFWVM)算法。建立鲁棒函数加权目标函数,通过施加随迭代次数可变的动态权重来抑制配准过程中异常点云的影响,并由高斯-牛顿法迭代完成刚性转换矩阵的求解。以高铁白车身侧墙、汽车车门框为研究对象的试验结果表明,较经典的ICP(Iterative closet point)、VMM(Variance minimization)、WPMAVM(Weighted plus-and-minus allowance variance minimization)、DPWVM(De-pseudo-weighted variance minimization)等算法,所提RFWVM算法配准精度更高,能够有效抑制各种异常点云对配准结果的影响,并具有更好的稳定性和鲁棒性,能够有效实现各类车身构件点云的精确配准。
- 单位