摘要

视网膜血管检测在眼底疾病的诊断和治疗中具有重要的临床价值。但是,由于眼底图像特征的复杂性和多样性,大部分的视网膜分割方法存在血管分割性能低、抗噪声干扰能力弱和对病灶敏感等问题,为此,提出了一种集成深度分类神经网络对像素点分类的方法。首先利用不同的残差网络模型来分类像素点,获得血管分割图像;然后通过集成学习的方法对各个模型的分割结果进行处理,获得最终的视网膜血管分割图像。在STARE、DRIVE和CHASE数据集上的实验仿真结果显示,分割准确率分别达到97.36%,95.57%,96.36%,特异性分别达到98.06%,97.76%,97.84%,F-measure分别达到84.98%,82.25%,79.87%。比R2UNet的F-measure分别提高了0.23%,0.54%,0.59%。