基于VMD-CNN-LSTM模型的渭河流域月径流预测

作者:包苑村; 解建仓*; 罗军刚
来源:西安理工大学学报, 2021, 37(01): 1-8.
DOI:10.19322/j.cnki.issn.1006-4710.2021.01.001

摘要

为了提高月径流预测的精度,解决月径流的非线性和不稳定性对于预测结果的影响,提出了变分模态分解(VMD)、卷积-长短期记忆神经网络(CNN-LSTM)组合的VMD-CNN-LSTM模型。通过选取渭河流域张家山站和魏家堡站1960—2005年的实测月径流数据进行训练和测试,并与EMD-LSTM、EMD-CNN-LSTM、VMD-LSTM模型进行对比,选取均方根误差(RMSE)、平均绝对误差(MAE)和Nash系数(NSE)对测试集的预测结果进行评价。研究结果表明VMD-CNN-LSTM模型相较于其他模型有更优的预测精度以及更低的误差,且对于峰值谷值的拟合更精确,为月径流的预测提供了一条新的途径。

全文