未成熟芒果的改进YOLOv2识别方法

作者:薛月菊; 黄宁; 涂淑琴; 毛亮; 杨阿庆; 朱勋沐; 杨晓帆; 陈鹏飞
来源:农业工程学报, 2018, 34(07): 173-179.

摘要

在果园场景下,由于光照的多样性、背景的复杂性及芒果与树叶颜色的高度相似性,特别是树叶和枝干对果实遮挡及果实重叠,给未成熟芒果检测带来极大的挑战。本文提出果园场景下未成熟芒果的改进YOLOv2检测方法。设计新的带密集连接的Tiny-yolo网络结构,实现网络多层特征的复用和融合,提高检测精度。为克服遮挡重叠果实检测困难,手工标注遮挡或重叠芒果的前景区域,然后用样本的前景区域训练YOLOv2网络,减小边界框内非前景区域特征的干扰,增强对目标前景区域卷积特征的学习。并以扩增的数据集,采用增大输入尺度和多尺度策略训练网络。最后,对本文方法进行性能评价与对比试验。试验结果表明,该方法在测试集上,芒果目标检测速度达83帧/s,准确率达97.02%,召回率达95.1%。对比Faster RCNN,该方法在杂物遮挡和果实重叠等复杂场景下,检测性能显著提升。