在Hilbert空间中研究单调变分不等式问题的惯性松弛投影算法.在该算法的每一次迭代中,只需要向特殊结构的半空间进行2次投影.另外,采取一定的线搜索条件,在单调和Lipschitz连续且Lipschitz系数大小未知的假设下,证明该算法所产生的序列强收敛到变分不等式的解.