摘要
为了实现船舶交通流量的精确预测,对某大桥在2010年始~2016年终之间通过的船舶数量进行实测,并将实测数据作为时间序列,对其进行NP单根检验,得到的该时间序列具有非平稳性,进而建立EEMD-IAGA-BP神经网络预测模型,将实测船舶交通流量分解,得到多个平稳的分解信号,采用EEMD模型对其进行优化计算,研究结果表明:EEMD-IAGA-BP神经网络预测模型精度高于传统IAGA-BP模型,能够较为精确的预测船舶交通流量。
-
单位中国船舶重工集团公司第七二三研究所; 扬州海科电子科技有限公司; 扬州市职业大学; 电子工程学院