针对辐射源目标精确识别需求,结合以深度学习为代表的机器学习理论技术,提出将改进型AlexNet作为特征提取器,实现目标细微特征提取固化,形成智能化识别网络模型。以广播式自动相关监视(ADS-B)信号为实验对象,在机场实地采集了13个目标的ADS-B脉冲信号数据作为辐射源目标个体识别的训练和测试样本,利用AlexNet和改进的AlexNet验证了算法的有效性。结果表明,改进的AlexNet网络训练时间更快,综合识别率达到98.32%。