摘要
针对图像分割中K均值算法全局搜索能力差、初始聚类中心选择敏感的问题,提出了一种将自适应人类优化算法与K均值算法相结合的聚类算法.该算法利用自适应人类学习优化算法初始化聚类中心,提高K均值算法的稳健性.结果表明,该算法聚类得到的标准差相比传统K均值算法和基于粒子群K均值(PSO-Kmeans)算法分别小两个数量级和一个数量级,同时图像分割得到的PSNR值均较高,具有算法收敛速度更快,聚类质量更好,图像分割效果更好,适应性更强的优点.
-
单位信阳农林学院