摘要
针对目前机器人抓取检测方法抓取角度预测过于离散、抓取过程可能产生较大偏角,降低抓取检测精度,甚至导致抓取失败的问题,提出了一种基于YOLOv5神经网络模型改进的机器人实时抓取检测方法。首先,以单阶段目标检测模型YOLOv5为基础提取抓取框坐标及抓取角度;之后对抓取角度进行更细致的划分,同时引入环形平滑标签以适应角度的周期性,建立相邻角度之间的联系,将YOLOv5检测头进行解耦,并对损失函数进行优化,提高检测精度;最后,在Cornell数据集上进行实验验证。实验结果表明,与经典的抓取检测方法相比,所提算法能够更好地预测抓取角度,提升抓取检测精度;在Cornell数据集上,此模型达到了97.5%的准确率以及71frame/s的检测速度。
- 单位