摘要

针对红外与可见光图像在融合过程中目标物体的边缘模糊导致细节丢失的问题,提出一种基于滚动引导滤波器(RGF)和卷积稀疏表示(CSR)的红外与可见光图像融合方法。首先,利用RGF和高斯滤波器对配准后的源图像进行多尺度分解;其次,针对基础层,通过构建对比显著图和权重矩阵进行融合;然后,针对细节层,利用交替方向乘子方法(ADMM)求解卷积稀疏系数,采用CSR融合规则完成特征响应系数融合;最后,经过重构得到融合结果图。实验结果表明,所提方法能够克服在目标物体的边缘处模糊导致细节信息丢失的问题,较好地保留源图像的对比度和边缘纹理信息,同时提高了多个客观评价指标。