摘要

应用卷积神经网络将肺结节从含有背景、噪声的胸腔区域里检测并识别出来。首先,对图像进行预处理,获得肺实质图像。然后,应用Faster R-CNN多特征融合算法检测肺结节候选区域,再利用多角度特征融合方法滤除假阳性结节。接着,通过数据增强法、残差学习法、优化初始参数等对卷积神经网络的性能进行优化。最后,应用迁移学习方法对数据集进行训练,得出最终的检测结果。抽取LIDC数据集中含有肺结节图像数据,检测并识别肺结节的准确率达到98. 1%。实验结果表明,该算法优于其他3类算法,实现了肺结节的精确检测和识别,在保证检测和识别出正确结节的前提下,降低了过拟合率及训练时间,提高了算法效率,研究成果为早期肺癌的诊断提供参考依据。

  • 单位
    内蒙古科技大学包头医学院