摘要
目的在智能网联汽车系统开发中,复杂环境下的车道线检测是关键环节之一。目前的车道线检测算法大都基于颜色、灰度和边缘等视觉特征信息,检测准确度受环境影响较大。而车道线的长度、宽度及方向等特征的规律性较强,具有序列化和结构关联的特点,不易受到环境影响。为此,采用视觉信息与空间分布关系相结合的方案,来提高复杂环境下的车道线检测能力。方法首先针对鸟瞰图中车道线在横向和纵向上分布密度不同的特点,将目标检测算法YOLO v3(you only look once v3)的网格密度由S×S改进为S×2S,得到的YOLO v3(S×2S)更适于小尺寸、大宽高比物体的检测;然后利用车道线序列化和结构相互关联的特点,在双向循环门限单元(bidirectional gated recurrent unit,BGRU)的基础上,提出基于车道线分布关系的车道线检测模型(BGRU-Lane,BGRU-L)。最后利用基于置信度的D-S(Dempster-Shafer)算法融合YOLO v3(S×2S)和BGRU-L的检测结果,提高复杂场景下的车道线检测能力。结果采用融合了视觉信息和空间分布关系的车道线检测模型,在KITTI(Karlsruhe Institute of Technology and Toyoko Technological Institute)交通数据集上的平均精度均值达到了90.28%,在欧洲卡车模拟2常规场景(Euro Truck Simulator 2 convention,ETS2conv)和欧洲卡车模拟2复杂场景(Euro Truck Simulator 2 complex,ETS2complex)下的平均精度均值分别为92.49%和91.73%。结论通过增大YOLO v3纵向的网格密度,可显著提高模型检测小尺寸、大宽高比物体的准确度;序列化和结构关联是车道线的重要属性,基于空间分布关系的BGRU-L模型的准确度受环境影响较小。两种模型的检测结果在经过D-S融合后,在复杂场景下具有较高的准确度。
- 单位