基于深度学习自动分割模型乳腺癌放疗临床应用与评价

作者:陈辛元; 门阔; 唐玉; 王淑莲; 戴建荣*
来源:中华放射肿瘤学杂志, 2020, (03): 197-202.
DOI:10.3760/cma.j.issn.1004-4221.2020.03.009

摘要

目的 将深度学习算法与商用计划系统整合,建立乳腺癌靶区和危及器官(OARs)自动分割平台并加以验证。方法 入组在中国医学科学院肿瘤医院行保乳术后放疗的左、右乳腺癌患者各400例。基于深度残差卷积神经网络进行训练临床靶区(CTV)和OARs分割模型,建立端到端的基于深度学习的自动分割平台(DLAS)。使用42例左乳腺癌和40例右乳腺癌验证DLAS平台勾画的准确性。分别计算总体戴斯相似性系数(DSC)和平均豪斯多夫距离(AHD)。并计算相对层位置与每层DSC值(DSCs)的关系,进行逐层分析。结果 左/右乳腺癌全乳CTV平均总体DSC和AHD分别为0.87/0.88和9.38/8.71mm,左/右乳腺癌OARs平均总体DSC和AHD范围为0.86~0.97和0.89~9.38mm。对CTV和OARs进行逐层分析,达到0.90以上表示医生只需要较少修改甚至不用修改的层面,左右乳腺癌的CTV勾画占比约44.7%的层面,OARs自动勾画占比范围为50.9%~89.6%。对于DSCs<0.7,在两侧边界区域(层位置0~0.2和0.8~1.0) CTV和除脊髓以外的感兴趣区域DSCs值明显下降,且越靠近边缘降低程度越明显。脊髓采用全层勾画,未发现有特殊区域出现DSCs明显下降。结论 建立端到端的DLAS平台整合乳腺癌分割模型取得较好的自动分割效果。在头脚方向的两侧边界区域,勾画的一致性下降较明显,有待进一步提高。

  • 单位
    中国医学科学院北京协和医学院

全文