摘要
在推荐系统中,利用图卷积网络等方法提取图的高阶信息缓解了冷启动问题。为了在此基础上融合神经网络协同过滤的深层特征提取能力,提出一种基于图卷积的双通道协同过滤推荐算法(GCNCF-2C)。首先,将推荐问题分为上游任务和下游任务;其次,在上游任务中,预训练编码器利用包含残差的一维卷积层和多个图卷积层在两个独立通道中对节点特征和图高阶特征进行分离提取,形成节点的特征表示;最后,解码器通过节点特征进行评级预测,进行端到端的训练。在数据集MovieLens-100k和MovieLens-1M上的实验表明,该算法相比于基线模型在两个数据集上的RMSE指标平均提高1.72%和1.76%,MAE指标平均提高2.7%和1.98%,同时在基于用户和项目的冷启动实验中RMSE指标平均提高5.9%,具有更好的综合性能。
- 单位