摘要
针对自动机振动信号非平稳、非线性的特点,提出基于多尺度关联维数和线性局部切空间排列(linear local tangent space alignment,LLTSA)相结合的自动机故障诊断方法。首先,利用局部特征尺度分解(local characteristicscale decomposition,LCD)将自动机振动信号分解为不同尺度下的内禀尺度分量(intrinsic scale component),提取出反映状态信息的主要分量并计算各分量的关联维数。然后,利用线性局部切空间排列算法挖掘出可区分度更高的特征子集。最后,将得到的低维特征输入支持向量机进行识别,自动机故障诊断实验表明,所提方法具备较高的诊断准确率。此外,将LCD与经验模态分解(empirical mode decomposition,EMD)和局部均值分解(local mean decomposition,LMD)方法的诊断结果进行比较,验证所提方法的优势。
-
单位中国人民解放军陆军工程大学