摘要
针对深度神经网络用于入侵检测方法时存在训练过程中由于数据不平衡和特征冗余两大问题而导致的低检测率和高误报率,提出一种基于二次决策的深度学习模型(TDDL).该模型由深度堆栈自动编码器(DSAE)和神经网络结合,包括二个阶段特征学习,其中第一阶段使用DSAE对特征压缩并加入区分异常数据的概率值特征,第二阶段使用神经网络(NN)接收第一阶段的特征并训练,从而降低特征冗余和平衡对正常数据的偏向,以提高检测效果.经KDDCUP99数据集进行实验测试,仿真实验结果表明,该模型能有效提升深度神经网络在入侵检测数据上特征学习的效果,使其具有更高的准确率的同时,还具有较低的误报率.
- 单位