【目的】提出一种求解昂贵黑箱优化问题的多代理辅助进化算法。【方法】对ESAO算法进行改进,将全局搜索中每代的进化操作进行10次,以降低求解的不稳定性;并对全局搜索与局部搜索的转换采用自适应距离准则判断,从而提高求解的精度。【结果】得到了新的昂贵黑箱优化问题的多代理辅助进化算法。【结论】使用22个测试问题对新算法的数值结果进行评估,结果表明新算法与ESAO算法相比优势明显。