摘要
针对MEMS陀螺仪随机漂移产生的误差,提出一种引入Hurst指数的自适应噪声完备集成经验模态分解(CEEMDAN)与自适应卡尔曼滤波(AKF)相结合的去噪模型。首先,通过CEEMDAN对陀螺仪原始信号进行分解,得到一系列频率由高到低的本征模态函数(IMF)和一个残差余量;然后,提出Hurst指数模态筛选机制,将IMF分量划分为噪声IMF、混合IMF和信息IMF;最后,使用自适应卡尔曼滤波器对混合模态分量进行滤波并重构信号。结果表明,CEEMDAN较EMD和EEMD具有更高的分解精度;使用AKF处理混合模态,通过Hurst指数筛选机制重构信号的信噪比相较于排列熵和相关系数法分别提升约12%、36%;使用Hurst指数筛选机制,AKF处理混合模态后重构信号的RMSE较小波阈值滤波降低约23%。
- 单位