摘要
目的:探讨深度卷积神经网络(DCNN)模型在胸部CT图像上对肋骨骨折自动定位和诊断的作用。方法:回顾性纳入2 300例因胸外伤于门急诊初诊、行胸部CT检查的患者图像,其中300例为测试集。应用分割网络、关键点检测网络和骨折检测网络建立DCNN模型,对肋骨骨折定位和诊断进行训练和验证。以高年资医师诊断为金标准,应用χ2分割检验和单因素方差分析比较低年资医师、DCNN模型和在DCNN模型辅助下的低年资医师诊断肋骨骨折的精确率、召回率、F1-score和诊断用时。统计DCNN模型诊断的假阳性和假阴性病例数量。结果:在300例测试集胸部CT图像中,共发现797处肋骨骨折,DCNN模型有22例假阳性病例和62例假阴性病例。低年资医师、DCNN模型和在DCNN模型辅助下的低年资医师诊断肋骨骨折的精确率(χ2=8.85,P=0.012)和召回率(χ2=43.2,P<0.001)有明显差别。低年资医师诊断肋骨骨折的精确率(94.2%)低于DCNN模型(97.1%),在DCNN模型辅助下,低年资医师诊断的精确率有所增加(96.4%),DCNN模型和在DCNN模型辅助下低年资医师诊断的精确率无明显差别(96.4%)。低年资医师诊断肋骨骨折的召回率(84.8%)低于DCNN模型(92.2%),在DCNN模型辅助下医师诊断的召回率明显升高(94.0%)。低年资医师的诊断用时平均为(155.0±31.9)s,而DCNN模型诊断肋骨骨折仅需(4.8±1.4)s,在DCNN模型辅助下医师诊断用时可缩短至(40.6±7.0)s,三者有明显差别(F=328.1,P<0.001)。结论:DCNN模型在胸部CT图像上可准确定位、诊断肋骨骨折,显著缩短诊断用时,减少漏诊、误诊率。
-
单位天津市天津医院; 上海联影智能医疗科技有限公司