摘要

针对距离矢量跳距(Distance Vector Hop, DV-Hop)定位算法通信半径选择不合理导致平均跳距和定位误差较大的问题,提出一种基于混沌粒子群改进的DV-Hop定位算法,利用混沌映射的遍历性和随机性实现粒子的局部深度搜索,避免粒子群算法陷入局部最优。通过混沌粒子群优化(Particle Swarm Optimization, PSO)算法迭代求解所有信标节点的通信半径,引入混沌理论调整非线性惯性权重优化搜索过程,通过混沌搜索和混沌扰动迭代求解信标节点的最佳通信半径;通过极大似然估计(Maximum Likelihood Estimate, MLE)法计算的平均定位误差作为混沌粒子群算法的适应值函数;使用费希尔矩阵求解的误差下限作为约束条件求解适应值函数,同时把平均通信半径作为节点能耗模型的阈值来降低节点能量消耗。仿真实验表明,提出的算法在不增加算法复杂度的前提下能够在定位精度方面提升近58%,节点能量消耗方面降低近24%。