摘要
现代机械设备日趋精密化、智能化,同时工作环境与工况也越来越复杂,一旦零/部件出现故障,不但会对设备本身造成伤害,还有可能造成人员伤亡等事故;因此,及时有效地发现并处理设备故障有着重要的意义。随着人工智能技术的发展,以机器学习为核心的机械故障诊断技术飞速发展。对常用的机器学习理论进行了梳理和总结,主要介绍了基于浅层学习下的人工神经网络、支持向量机及Boosting算法和基于深度学习下的卷积神经网络、自动编码器及深度置信网络这6大类机器学习模型,分析比较了这些模型的优缺点,并总结了各个模型在机械故障诊断领域的应用。最后对机器学习在故障诊断领域未来的发展做出了总结和展望。
-
单位青岛科技大学; 机电工程学院