基于声发射信号与BP神经网络的煤粉粒径识别研究

作者:程智海; 刘汇泉*; 刘勇; 秦欢; 刘海龙
来源:振动与冲击, 2020, 39(11): 258-264.
DOI:10.13465/j.cnki.jvs.2020.11.034

摘要

煤粉粒径的测量是燃煤电站一项重要的工作。针对目前筛分法存在的缺点,提出了一种结合声发射信号与BP神经网络在线识别煤粉粒径的方法。在频域中对噪声信号与煤粉声发射信号进行比较,确定了信号中反映煤粉粒径的频率区间,并利用小波包置零方法对信号进行去噪,在信噪比与信号平滑度方面比较了几种常用小波函数的去噪效果。通过功率谱分析发现了信号能量随煤粉粒径的变化特征。最后提取信号能量特征,利用BP神经网络对煤粉粒径进行识别。研究结果表明,结合声发射信号与BP神经网络识别煤粉粒径,可以获得良好的效果。