针对传统离群点检测算法的局限性进行研究,利用数据对象之间的相邻关系,提出了一种基于密度和距离相结合的离群检测算法,该算法解决了基于距离的离群检测算法不能准确识别局部离群点的问题,有效避免由于稀疏和密集簇过于邻近的而出现离群点误判的情况。通过在人工模拟数据及真实数据集上的实验测试证明改进算法的可行性,该算法能更有效地检测出数据集中的离群对象。