提出了一种有效的基于步态能量图像的身份识别方法.首先生成合成步态能量图像(GEI)丰富训练集样本数量.然后利用在以前文献中被忽略的具有良好识别性能的Gabor相位信息作为身份特征,并采用流型学习算法保局影射(LPP)将此高维数据在低维空间表示.通过使用简单的分类策略在USF步态数据库上进行对比实验,结果表明本方法的正确识别率优于现有其他的自动步态识别算法.