摘要

为实现穴盘甘蓝的智能化管理,针对穴盘甘蓝病害识别存在的光照不均匀、对比度低和待检测目标小等问题,研究了基于深度学习的穴盘甘蓝病害检测算法。该算法结合通道空间注意力机制模块,在特征提取模块对特征信息进行重标定,引导模型关注病害区域特征,抑制背景噪声,降低模型漏检率。并采用自适应多尺度特征融合算法提取穴盘甘蓝病害多尺度特征,充分利用不同尺度特征的语义信息提升小目标的检测精确率。由于算法的检测框定位不准确,在回归损失函数中添加了重叠面积损失、中心点距离损失和宽高损失,对回归任务进行了优化,提高穴盘甘蓝病害预测框定位精度;同时引入变焦损失函数作为分类损失函数,利用权重缩放因子缓解模型训练过程中相似病害类间差距小的问题。结果表明,研究算法对穴盘甘蓝炭疽病、细菌性黑斑病、褐斑病、黑腐病的检测平均精确率分别为97.59%、99.70%、98.69%和97.64%;其平均精度均值达到98.41%,与YOLOX、Faster R-CNN、YOLOv3、SSD、CenterNet算法相比,分别提高了4.96、12.86、18.19、4.71、10.69百分点。

全文