摘要
多传感器数据的来源众多,数据时间序列的特征随机性强,难以统一,导致其信息应用范围缩小。提出一种多传感器信息融合的模糊控制模型。运用不同映射模式描述多传感器信息融合状态空间,创建随机时段下测量空间矩阵,获得传感器信息采集时间序列特征。根据信息采集时间序列特征构建二级架构信息融合模型,第一级架构使用模糊控制算法划分输入-输出空间模糊区间,得到模糊规则并计算模糊规则相对信任度,利用模糊规则映射关联聚类信息,剔除传感器冗余数据。在此基础上使用智能粒子滤波法将多传感器信息传输至相应粒子滤波模块,代入遗传算法交叉与变异操作调整粒子权重,通过重采样保存高权值粒子,得到完整的多传感器信息融合结果。仿真结果表明,多传感器信息融合的最大能耗值为110 mJ,信息采集网络延迟为0.75 s,融合时间平均值为4.5 s,信息融合的误差值小于50 m,系统鲁棒性较强。
- 单位