摘要
柑橘黄龙病严重影响柑橘的产量和品质。在自然背景下,柑橘叶片之间存在相互遮挡以及尺寸变化大的问题,使得遮挡及小尺寸的黄龙病叶片容易漏检,而且由于黄龙病叶片的颜色、纹理特征与柑橘其他病害十分相似,容易存在误检的问题,导致现有的算法对自然背景柑橘黄龙病检测的精度不高。本研究提出了一种结合剪切混合拼接(Shearing mixed splicing, SMS)增广算法和双向特征融合的自然背景柑橘黄龙病检测方法,该方法通过SMS、镜像翻转和旋转方法对训练集和验证集进行了增广,增加了训练集和验证集图像中背景目标的数量和多样性;为了自适应地改变柑橘黄龙病检测中的局部采样点,增大有效感受野,使用可变形卷积替换骨干网络后3个卷积层中所有的标准卷积;为了减小自然背景的影响,使用全局上下文模块对骨干网络后3个卷积层输出的特征图进行特征增强,来建立有效的长距离依赖,以便更好的学习到全局上下文信息;使用双向融合特征金字塔,改善浅层特征和深层特征的信息交流路径,用以降低因柑橘黄龙病叶片尺寸变化大导致的漏检,提高小尺寸的柑橘黄龙病叶片的检测精度。实验结果表明,本研究提出的方法用于自然背景柑橘黄龙病的检测,平均精度可达84.8%,性能优于SSD、RetinaNet、YOLO v3、YOLO v5s、Faster RCNN、Cascade RCNN等目标检测方法。
- 单位