摘要
针对传统BP神经网络在入侵检测中,BP神经网络模型存在容易陷入局部最优、收敛速度慢、初始值随机性较大等缺点,提出改进天牛群算法(beetle swarm optimization,BSO)用于优化BP神经网络的权值与阈值,并采用可变的感知因子及导向性的学习策略,以增强算法跳出局部最优的能力,提升算法全局寻优能力。利用天牛群算法群体智能的特点,提高BP神经网络的收敛速度。并将天牛群优化的BP神经网络模型应用于入侵检测。仿真实验结果表明,优化后的BP神经网络模型能够显著提高模型的收敛速率和对入侵数据的检测率,降低误报率。
- 单位