摘要

[目的/意义]犯罪行为的分布和发生在时间上和空间上具有一定的规律性。犯罪情报预测分析对于获取未来的犯罪变化动态具有重要意义。传统的犯罪情报预测分析,要求熟悉政治、人文、经济、地理等多方面因素和社会犯罪动态变化规律,具有一定的局限性。因此需要探究新方法。[方法/过程]针对犯罪数据构建了神经网络和STARM A(时空自相关移动平均模型)的时空序列混合模型,根据历史犯罪数据预测未来发生犯罪的数量变化。首先利用神经网络提取犯罪数据中非线性特征,然后对残差建立STARMA模型,整合出最终的预测结果。[结果/结论]既弥补了传统STARMA模型无法挖掘非线性关系的不足,又满足了模型所需数据的平稳性的要求。通过实验验证了该方法可减小预测误差,在犯罪情报预测方面更加准确。