摘要
卷积神经网络(CNN)对空间特征具有敏感性,而Inception相比CNN具备多尺度提取特征优势;长短时记忆网络(LSTM)对时间特征具有敏感性,而深层长短时记忆网络(DLSTM)比LSTM具备更深层次提取特征优势。为了多尺度充分提取滚动轴承振动信号在空间和时间上的特征,实现滚动轴承故障诊断,提出了一种Inception通道和DLSTM通道结合的Inception-DLSTM双通道滚动轴承故障诊断模型。对于Inception通道,把轴承振动信号经过小波变换生成的时频图作为输入,利用Inception网络多尺度提取时频图的空间特征信息;对于DLSTM通道,直接把轴承振动信号作为输入,利用DLSTM网络充分提取信号的时间特征信息。然后把两个通道输出的特征信息连接成一个时空特征向量,最后利用分类器进行轴承故障诊断识别。对轴承故障数据进行对比实验可得,Inception-DLSTM双通道的故障识别准确率可达100%,具备良好的故障诊断和特征提取能力。
- 单位