摘要

针对高分辨率遥感影像中道路目标结构复杂且背景地物多样的问题,设计了一种适用于高分辨率遥感影像道路提取的SM-Unet网络。为捕获孤立道路区域的长距离关系的同时也能关注局部信息,网络编码器下采样前加入条纹池化模块;为增强网络对复杂场景中道路区域上下文信息的获取能力,使道路特征表示更有辨别力,编码器最后卷积层后加入混合池化模块。为验证SM-Unet模型提取道路的能力,选择我国高分二号遥感影像为数据集开展道路提取实验。结果表明,SM-Unet网络训练的道路提取模型在精确率、召回率、F1分值、平均交并比等评价指标上,均优于U-Net、FCN、DeepLabV3+等网络模型。同时,在道路提取的完整性方面,提取效果最优。