基于CNN公交客流检测系统的设计

作者:张开生*; 刘泽新; 郭碧筱; 杨帆
来源:石河子大学学报(自然科学版), 2019, 37(05): 654-660.
DOI:10.13880/j.cnki.65-1174/n.2019.21.007

摘要

针对公交客流数据获取现状不稳定、处理方法陈旧及无法实时调度等问题,本文结合图像处理和深度学习方法,设计了公交客流检测系统,重点对乘客头部的特征提取算法进行研究。该系统将工业摄像头分别置于车厢前端、中端及末端的上侧,以此获得车内乘客三通道图像,在Raspberry Pi树莓派中移植Tensor Flow深度学习框架,由此搭建卷积神经网络CNN的模型,以此模型提取车厢内乘客头部特征,再采用综合梯度下降算法优化学习速率和三通道数据融合技术判断车内拥挤情况,从而保证模型的鲁棒性。实验结果表明:将识别结果输入SPP-Net网络结构中,上述算法识别准确率为87. 23%,较传统卷积神经网络提高9. 11%,收敛速率提高20. 77%,其实时的拥挤度判断更具有实用性。