摘要

针对霍尔位移传感器温度漂移的问题,提出了一种基于粒子群优化算法与遗传算法优化最小二乘支持向量机(PSO-GA-LSSVM)的温度补偿新模型。该模型利用粒子群优化算法对最小二乘支持向量机中的惩罚因子和核函数进行优化选取,提高了模型的训练速度与准确度;并引入遗传算法中的变异思想,拓展模型的群搜索空间,提高了寻取更优值的概率。研究结果表明,补偿后该传感器的零位温度系数由1.25×10-2/℃减小到6.33×10-4/℃,其灵敏度系数由4.55×10-3/℃减小到4.22×10-4/℃,均提升了一个数量级,实现了对该传感器的温度补偿。