摘要
基于知识图谱的问答(Question Answering over Knowledge Graph, KG-QA)系统通过对给定的自然语言问题进行语义解析,将问题映射到知识图谱〈主,谓,宾〉三元组,并对三元组进行推理得到问题的答案。由于自然语言具有多样性的特点,一个问题可能有多种表述,而三元组知识在知识图谱中却是规范的结构化数据,如何将自然语言问题映射到知识图谱三元组是KG-QA的难点。文中提出了一种新的Key-Value关联记忆网络,从知识图谱的角度出发,关注候选答案知识间的关联关系以及知识图谱中的知识与自然语言问题表征之间的关系。此外,在模型中引入了注意力机制,使其具有更好的可解释性。在WebQuestions数据集上进行实验,结果表明,所提方法的F1值比基于信息抽取的最优方法提高了5.9%,比基于语义分析的最优方法略有提高,验证了该方法的有效性。
- 单位