摘要

文本分类是自然语言处理(NLP)领域中的基础任务,双向长短时记忆网络(BiLSTM)具有遗忘细胞状态中的信息和记忆新的信息、在上下文中依赖能力较好的优势。为进一步增强文本的特征表达,本文提出一种基于LDA的最大概率填充模型。首先,运用Word2Vec词嵌入方式生成文本向量;其次,根据LDA模型对文本向量矩阵进行填充,丰富语义信息,采用BiLSTMAttention模型训练填充后的向量矩阵;最后,采用softmax进行分类。实验结果表明,本文提出的方法在IMDB电影评论分析数据集中的分类准确率为98.43%,相较于单向的RNN模型提高1.63%,比双向的BiLSTMAttention模型提高0.83%。