摘要
基于磁强计测量的微小卫星姿态确定系统中,由于状态方程和测量方程均为轨道参数的函数,因此在轨道估计存在误差的情况下,标准的扩展卡尔曼滤波算法(Extended Kalman Filter,EKF)并不能获得姿态的最优解。针对轨道确定误差对姿态确定的影响,基于自适应滤波及鲁棒估计原理,提出了鲁棒自适应卡尔曼滤波(Robust Adaptive Kalman Filter,RAKF)算法。该算法通过构建合理的膨胀因子和自适应因子,自动调节观测噪声方差矩阵和一步预测方差矩阵的大小,从而改变旧有数据及观测信息在滤波中的权重,获得更合理的卡尔曼增益,使滤波器获得近似最优结果。基于标准卡尔曼滤波的稳定性理论,证明了若系统一致完全可控并且一致完全可观,该滤波器是一致渐近稳定的。数学仿真表明,与EKF相比,RAKF能够将欧拉角估计精度从0.3°提高到0.2°,从而证明了该算法的有效性。
- 单位